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Abstract. The control space of a system described by an elementary catastrophe frequently 
has (locally at least) a Cartesian product structure, caused for example by physical distinc- 
tions among control variables or by observational necessity. The effect of this structure, 
like that of symmetries, can be to stabilise singular catastrophe sections (partial unfoldings). 
We define 'partial stability' to be the structural stability of a stratum of a catastrophe 
section under perturbations respecting the product structure. These ideas are illustrated 
by reference to a recent observation of 'double-cusp diffraction', and then applied to our 
previous studies of singular catastrophe sections. 

1. Introduction 

Elementary catastrophe theory was introduced by Thom (1972), extended by Arnol'd 
(1975) and explained simply by Poston and Stewart (1978) and Gilmore (1981). For 
a guide to its applications see Zeeman (1977), Poston and Stewart (19783, Berry and 
Upstill (1980), Stewart (1981, 1982). Zeeman (1982) sets it clearly within the context 
of dynamical systems: it provides a general model for systems governed by a gradient 
dynamic. 

An elementary catastrophe is generated by a function 4: S x C + R, where S is the 
n-dimensional state space manifold and C is the K-dimensional control space manifold. 
The theory describes for a typical such 4 the local behaviour of its critical points with 
respect to s E S (points where d,+(s, c) = 0) as c E C is varied. Of particular importance 
is the bifurcation set 93 c C on which the critical points of 4 are degenerate (d:c$(s, c) 
singular): as $23 is crossed the critical point structure of 4 changes. This leads to 
striking physical changes (catastrophes) in a system which is modelled so that critical 
points of 

Because the theory is local, S and C may be replaced by their tangent spaces R" 
and R K  respectively, so in this paper we will identify S with R" and C with R K ;  
indeed, in applications this identification is often globally valid. We will assume that 
the main singularity of 4 occurs at the origin of S x C. Two functions 4, $: S x C + R 
are regarded as equivalent if one can be made equal to the other by a smooth 
diffeomorphism of S x C  which preserves its form as a fibre bundle over C, and an 
elementary catastrophe is an equivalence class of such functions that is stable to small 
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perturbations (although modal catastrophes such as X9 discussed below are a little 
more complicated). A catastrophe is conveniently represented by a generating function 
that is a simple polynomial normal form (that these exist is one of the profound results 
of the theory). It is perhaps a surprising empirical result that generating functions 
arising directly from physical models are frequently very close locally to the canonical 
normal forms arising from the mathematics (see 0 4 for an example). Consequently, 
we shall mainly assume that we are dealing with a normal form. 

For the equivalence (and hence the notion of stability) described above to make 
sense there should be no additional structure in S x C, but in practice there frequently 
is. This paper is concerned with the existence of distinguished directions or subspaces 
in C which give it (locally) a product structure of the form 

c = RKI XRK2 x . .  . XRKm, m s K ,  K ,  = K. 
I =o 

Then only diff eomorphisms which preserve this structure strictly produce equivalent 
systems. Nevertheless, we take the view that it can be useful to regard this structure 
as imposed a posteriori onto a catastrophe existing (stably) in a structureless C. This 
is consistent with many existing applications of elementary catastrophe theory in which 
any structure in C has been completely ignored. However, it contrasts with the point 
of view taken by Wassermann (1975), who has classified unfoldings that are stable 
under an equivalence respecting a priori a fibration of the form C = R3 xR. The idea 
of distinguished control variables also underlies Golubitsky and Schaeff er’s (1979a) 
‘theory for imperfect bifurcations via singularity theory’ (included in Stewart’s (198 1, 
1982) reviews). These approaches have been generalised by Damon (1983), who has 
developed a general unfolding theory that accounts for such factorings, but without 
giving any classification results. 

In 0 2 we examine the origins of factored control spaces and show how they lead 
to catastrophe sections and partial unfoldings. Our particular concern is the stability 
of such partial unfoldings apart from the main singularity, under perturbations that 
respect the product structure of C. We develop the notion of partial stability, for which 
we establish conditions by using transversality in 8 3. Section 4 illustrates the ideas by 
applying them to a recent experimental and theoretical investigation of ‘double-cusp 
diffraction’ by Upstill et a1 (1982). In 0 5 we achieve our main purpose, which is to 
use the methods that we have established to enhance our previous studies of the infinite 
sequences of cuspoid and conic umbilic catastrophes via their singular coordinate 
sections (Wright (1981) and Wright et a1 (1982), respectively) and illustrate how this 
new information may be used. The technical details of the stability calculations are 
described in an appendix for the case of the conic umbilic sections, which is the most 
involved example that we have considered and hence subsumes the others. They 
primarily involve reducing the local unfolding of a singularity to normal form, of which 
there do not seem to be many detailed examples in the literature. 

2. Catastrophe sections and partial unfoldings 

Typically, a high-codimension catastrophe is observed not within the whole of C at 
once, but within some family of affine subspaces of C ; in other words, it is observed 
via a family of sections. By a catastrophe section 4% we mean the generating function 
4 restricted to Vc C, i.e. 4IsXw, which for many purposes is adequately described by 
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specifying the diffeotype of 4 within each region (stratum) of % where it is constant. 
If the origin O E  C, at which the main singularity of 4 occurs, lies in %, then 6% is a 
singular section of 4, i.e. a partial unfolding of 4lSx(,,). Only singular sections capture 
the intrinsic structure of the main singularity; non-singular sections display only the 
global structure organised by it. The subspace of C within which a catastrophe is 
actually observed constitutes a factor of C, but this may itself have a product structure, 
as may the remaining factor of C ; furthermore, the factors of C are frequently spanned 
by the axes used to define normal forms. These properties will be illustrated in detail 
in 0 4. We now describe two ways in which distinguished directions, or product 
structures, in C arise. 

Firstly, in modelling for example physical systems, the control variables generally 
do not all represent the same physical quantities: they might represent such diverse 
parameters as space, time, temperature, pressure, etc. It is probably reasonable to 
regard as physically equivalent two systems that are mathematically equivalent under 
a transformation among variables of only one type, such as among only spatial variables, 
or among only pressure variables, but if the necessary transformation mixes up for 
example space and pressure then the two systems may not be at all similar physically. 
Of course, the state variables may also represent physically distinct quantities, but we 
will not consider the effects of this here. Furthermore, some potential control para- 
meters may be much more readily accessible experimentally than otheis, so that a 
catastrophe is naturally observed within families of affine subspaces of the control 
space, spanned by the most accessible controls, rather than within the whole control 
space at once. For example, an optical caustic (which corresponds to 93) in three 
dimensions is most easily observed by photographing two-dimensional sections of it. 
One has some choice about the orientation of the sections, but it is most natural to 
take them perpendicular to the dominant ray direction, which is once again a physical 
distinction among directions in control space. In fact, Nye and Hannay (1984) show 
that only certain caustic orientations are possible, a concept that has meaning only in 
the presence of such distinguished directions. 

It is quite possible that only a singular section of a catastrophe is readily accessible 
in some particular experiment, despite the fact that it is a priori unstable. For example, 
such a section that displays a particular symmetry may in fact be stable if the experiment 
imposes this symmetry. The question: ‘What happens if the symmetry is relaxed?’ is 
at least partly answered by examining the partial stability of the unstable symmetric 
section, in that it shows what happens when new unfolding parameters that break the 
symmetry become available. Symmetry breaking has received considerable attention 
recently (e.g. Golubitsky and Schaeffer (1979b), see also Stewart’s (1981, 1982) reviews), 
but at present only scattered results are available on equivariant catastrophes (e.g. 
PoSnaru 1976, Wassermann 1977, Damon 1983). 

Sectioning of a catastrophe is more important the higher is its codimension K :  for 
example, the codimension-8 (unimodal) catastrophe Xg (Arnol’d 1973b, Godwin 1975, 
Callahan 1982) is important in constructing global models because among compact 
catastrophes (such that 4 always has a global extremum at finite s) of corank 2 it has 
the lowest codimension. A general outline of the significance of Xg for mathematics 
and applications is given by Zeeman (1976b, see also Zeeman 1977). It has also been 
applied, for example, to von Karman buckling of thin elastic plates (Chow et a1 1975, 
1976, List 1977, Magnus and Poston 1977, Poston and Stewart 1978, pp 317-24) and 
to phase transitions (Keller et a1 1979). There is evidence that this and higher catas- 
trophes are particularly important in optics (Berry 1977, Upstill 1979a, b, Nye 1979, 
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Berry and Upstill 1980, Berry 1982, Walker et a1 1983). In  view of its importance, we 
shall return to X, in § 4 as an illustration of the above remarks (in an optical setting). 

Secondly, distinguished control directions arise artificially in studies of the geometry 
of higher catastrophes (of codimension greater than 3). Such studies frequently proceed 
by examining the catastrophe within families of two- (or possible three)-dimensional 
affine subspaces of C, simply because of the difficulty of presenting (not to mention 
comprehending) information in more dimensions. See particularly Callahan ( 1  977), 
where the name tableau is introduced for a complete family of catastrophe sections: 
for further examples see Godwin (1971), Woodcock and Poston (1974), Upstill (1979a), 
Nye and Thorndike (1980), Callahan (1982, 1980, 1981). For catastrophes of high 
codimension it is possible to present only certain (arbitrary) subfamilies of sections. 
Wright (1981) and Wright et a1 (1982) have studied the general cuspoid and conic 
umbilic catastrophe in a particular set of mutually orthogonal plane sections through 
the origin of C, called singular coordinate sections, which have all but two of the 
control variables in a canonical normal form set to zero. These sections illustrate, 
among other things, some of the family resemblances among the sequences of related 
catastrophes, but they do  not directly give any information about the rest of C. However, 
by supplementing such sections with information about their partial stability to transla- 
tions we recover some information about a neighbourhood in C of the plane of section. 
It was this application that initially motivated the analysis described in the present 
paper. 

3. Partial stability 

An important property of a catastrophe section is its structural stability, i.e. whether 
it stays in the same equivalence class under a small perturbation. Like the whole 
catastrophe, a generic section is structurally stable, but familiar examples of unstable 
two-dimensional catastrophe sections are the beak-to-beak and lips events (e.g. Berry 
and Upstill 1980). The most interesting sections are, of course, the unstable ones, and 
the most unstable sections are those containing singularities of the highest codimension: 
in our case ‘singular sections’ through the origin of C. 

Because the whole catastrophe is stable, the effect on & of perturbing 4 must be 
locally equivalent to that of varying the control parameters in an open neighbourhood 
of %‘, so we will consider explicitly only the latter form of perturbation. Writing 
C = P x Q, q E Q, and taking %? P x { q } ,  we ask whether c $ ~ ~ ( ~ ~  is stable to small 
variations of q. It suffices to consider the stability of 4 on 3 fl %‘, the bifurcation set 
in %’, because for C E  3, 4 has codimension 0 and is hence completely stable. 

In considering the stability of a catastrophe section we respect the product structure 
of C by considering perturbations involving variations of q within each of the distinct 
factors to be independent. We will call this partial stability with respect to perturbation 
within a specific factor of C. The stratification of C (into smooth submanifolds-see 
Brocker and Lander (1975), Zeeman (1976a, b), Lu (1976)) induces a stratification of 
%, and it is both most convenient and most informative to analyse the partial stability 
of the strata individually. Indeed, for a singular section this is essential, because we 
know a priori that the whole section is unstable. 

Let . Y - m  represent a stratum of codimension m in C, and let us call its intersection 
fl Vi? with some ‘observation subspace’ %? of C a feature of &. Let us now 

denote the distinct factors of Q by {Q,} ,  so that C = P x 9, X .  . . x Q,. We define a 

Y K  - m  
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feature to be partially stable with respect to QI if its diffeotype as a point set is unchanged 
by variations of c E C lying entirely within Q1, i.e. variation only of the Q,-components 
of c. 

To analyse partial stability, we recall that two manifolds intersect transversally, 
and hence stably, if their tangent spaces at each point of the intersection span the 
ambient space (Gilmore 1981, ch 22, Chillingworth 1977, Poston and Stewart 1978, p 
63). Hence a feature YK-"' fl % will be partially stable with respect to Q1 if 

TcYK-m 0 T,% 2 Tc,Q1 

for all c E YK-"' n %, where c, is the projection of c onto Q1. Here we are regarding 
the 'perturbation space' Q, as the ambient space. 

at some point c of the stratum Y K - m  can be determined 
from the unfolding of the local singularity by reducing it to a normal form. Clearly, 
one need work only to linear order locally in the control variables. Methods for finding 
the normal form to which an unfolding may be reduced are outlined by Poston and 
Stewart (1978) and Gilmore (1981). (This is a much easier problem than actually 
finding the transformation that exactly accomplishes the reduction.) As an example, 
and to support our discussion in 8 5 ,  we perform explicitly in the appendix the 
calculations for the general conic umbilic catastrophe. 

Partial stability of a feature is most readily determined by inspecting the set of m 
linear equations defining TcYK-m: the feature is unstable to any change in controls 
that violates these equations in a way that cannot be compensated by a variation of c 
within W. In our applications in 38 4 and 5 ,  features corresponding to the intersection 
of two strata will be important-for further discussion of such intersection strata see 
Callahan (1982). The set of equations defining the tangent space of an intersection 
stratum is the union of the equations defining the tangent spaces of each of the 
intersecting strata, as used below and illustrated at the end of the appendix. 

Let us consider in a little more detail the case of two-dimensional sections, where 
% (and hence P )  is a plane. To be specific, and because it is the approach we will 
take for our analysis of cuspoid and conic umbilic catastrophes, let us regard the rest 
of C to be maximally factored as 

c= P x R  x . .  . XR,  

( K  - 2) times 

The tangent space 

~ = ( ( a ,  b ) ,  cI, ~ 1 , .  . . , c K - 2 ) ~  C. - 
Then the partial stability of a feature of % is its stability under translation of %j along 
any one of the axes of C not contained in %. 

We call a feature completely stable if it is partially stable to all cI, which means that 
and % intersect transversely in C=RK. If so, they intersect in a manifold of 

dimension 2 - m. (Add codimensions in RK.) Hence, as one expects, completely stable 
two-dimensional features can result only from strata of codimension 0, which are 
non-singular (Morse); completely stable one-dimensional features can result only from 
strata of codimension 1, i.e. A2 (fold) strata; and completely stable point features can 
result only from A3 (cusp) strata. (We use Arnol'd's (1973a) notation for singularity 
types.) 

Most features are not completely stable because generally TCYK-"' and (e do not 
together span C. This is the case for beak-to-beak and lips events in R3, at which the 
rib (cusped edge of B)-a codimension 2 stratum 9"-is tangent to the plane of section 
%. 

y K  - m  
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4. Application I: an observation of the OX, diffraction catastrophe 

To illustrate our theory in the context of modelling an experimental system, we apply 
it to ‘the double-cusp unfolding of the OX9 diffraction catastrophe’ recently studied by 
Upstill et al (1982), henceforth referred to as U82. In their experiment, a pair of 
orthogonal plane water waves of small amplitude was generated on the water surface 
of a ripple tank to provide a dynamic refracting interface, and laser light shone vertically 
through the tank was photographed using a shutter synchronised With the wave 
generators to act as a stroboscope. The dominant focusing arises from the local summits 
of the water surface, and a simple mathematical model shows that the resulting 
singularity in the optical eikonal is the binary quartic denoted OX9 (Arnol’d 1973b, 
Callahan 1982), for which a convenient universal unfolding is 

I $ = X ~ + I ( X ~ ~ ~ + ~ ~ + ~ ~ ~ + B X ~ ~ + C ( X ~ + ~ * ) + D ( X ~ - ~ ~ )  

+ Exy + Ux + Vy, K > - 2 ,  K Z 2 .  

This unfolding is eight-dimensional, and it is not surprising that the unfolding 
parameters were not all readily accessible. We shall consider the correspondence 
between the canonical control variables in (1) and physical variables only near the 
main OX9 focus. Then in order of decreasing accessibility: U and V correspond to 
spatial directions perpendicular to the laser beam, so that every photograph displays 
a (U,  V) section; C corresponds to the spatial direction parallel to the laser beam, i.e. 
the focusing height; and D corresponds to the difference in amplitude of the water 
waves. The physical control variables C and D are related by a 45” rotation to those 
that would result from taking monomial unfolding terms. The symmetry of the experi- 
ment requires that A = B = E = 0, and for small amplitude water waves (so that the 
focal length is very long) K is very small and might be taken as 0 to a first approximation 
(but see below). With A = B = E = K = 0, (1) separates into a sum of two cusp (A,) 
unfoldings, which is why this partial unfolding was called ‘the double-cusp unfolding 

The double-cusp unfolding is a partial unfolding of OX, and is hence highly unstable, 
so that one might expect it to be very difficult to observe. However, it is stable subject 
to the symmetries imposed by the experiment. The condition of far-field observation 
that makes K (approximately) zero also corresponds to a symmetry: essentially transla- 
tion invariances of the wavefunction. The interesting question is: ‘What happens when 
the symmetries are broken, in other words, how does this partial unfolding fit into the 
full unfolding of OX9?’ To answer this question we need to know (topologically, at 
least) how 4 will change if any one of A, B, E or K is perturbed slightly from zero. 
We know that the main singularity of the caustic will break up, since it is completely 
unstable (as discussed in § 3). However, this local break-up will be completely obscured 
by diffraction for sufficiently small perturbations. Instabilities of features of the 
double-cusp unfolding having lower codimension are likely to be much more readily 
observable, because they will cause global changes in the caustic. It is precisely to 
such instabilities that our partial stability analysis applies. 

U82 show that E may be varied from 0 by changing the angle between the water 
waves from 90” (and hence breaking a symmetry), and perturbing K from zero 
corresponds to removing the restriction to far-field observation. However, varying A 
and B, and achieving the full significant range of K values, would probably require 
adding a third water wave; in other words, rebuilding the apparatus! This and the 

of OX9’. 
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above discussion of U, V ,  C and D illustrates clearly how different control parameters 
can have very different physical significance, and may vary greatly in their accessibility. 
Experimental inaccessibility of controls stabilises partial unfoldings in practice. Fur- 
thermore, the experiment illustrates how physically distinct control parameters tend 
to correspond to distinct canonical control parameters in a simple way (at least near 
the main singularity). 

The purpose of this section is illustration, for which there is an obvious advantage 
in restricting dimensions to at most three. So rather than analyse the partial stability 
of the whole double-cusp unfolding, we will analyse the partial stability of the (U,  V ,  C )  
singular section of it to individual variations of A, E, E, K ,  and D away from 0. This 
follows the approach taken both experimentally and in the analysis of their results by 
U82. Because (U,  V, C )  is locally isomorphic to the space in which the physical focus 
forms, the (abstract) caustic in this experiment is naturally observed as a family of 
(U,  V ,  C )  sections. These could in principle be observed directly by, for example, 
blowing smoke around the focus and observing the scattered light, although U82 
actually observed each (U, V ,  C )  section as a stack of (U,  V) sections each at constant 
C by varying the focusing of the camera (see figures 4(a)-(h) and 9(a)-(g) of U82). 

The (U,  V ,  C )  singular section is shown in figure 1. Note that the caustic has point 
symmetry group 4". The A2 (fold) surfaces intersect to give A: strata along four 
curves that also coincide with D: (hyperbolic umbilic) strata, so that the caustic surfaces 
'within the cusps' actually consist of three coincident A, strata denoted by A:. Hence 
the double-cusp caustic is actually much more complex than it appears. The origin 
of this complexity is nicely illustrated in 0 4 of Callahan (1982 t see  especially figures 
19 and 25. 

,A: surface: 

Figure 1. The (U, V, C) singular section of the double-cusp caustic (from figure 1(a) of U S ) .  

Table 1 shows the partial stability of each stratum of the (U,  V ,  C )  singular section, 
although where there are several strata related by the 4mm symmetry, we consider 
only a single representative. As we remarked in 0 3, the tangent space of a stratum is 
defined by a set of linear equations in the local control variables, the number of 
equations being equal to the codimension of the stratum. Each parenthesis in the 
middle column of the table corresponds to one such equation, and shows the control 
variables appearing in it. If none of U, V or C appears in any parenthesis, then the 
stratum is unstable to all the controls in that parenthesis, as indicated in the final 
column of the table. Note that a superscripted stratum has codimension equal to that 
of the basic singularity multiplied by the superscript, e.g. A: has codimension 3. 
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Table 1. Partial stability of features of the singular ( U ,  V, C)-section of OX, 

Singularity 
type related by tangent space 

Sets of local control variables Stability to A, E,  0, E, K 
of ( U ,  V ,  C) section 

A? (surface) 
A: (line) 
A: (surface) 
A, (line) 
D: (line) 

( A ,  B, C + D, E, K,  U )  
(A, B, C + 0, E, K,  U ) ,  (A,  E, C - D, E, K ,  V )  
( A ,  E ) ,  ( E ,  K ) ,  ( C  + D, U )  
(A,  C + D, K ) ,  ( E ,  E, U )  
(A, E,  E, K ) ,  (A, C - 0, K ,  V), (8, C + 0, K,  U) 

Stable 
Stable 
Stable to D only 
Stable 
Stable to D only 

The essential ‘double-cusp’ nature of OX9 resides in the structure that is explicit in 
figure 1. This consists of the pair of cusped caustic surfaces, each comprising a n  A3 
line and  two A* surfaces, and  their intersections in four A: lines. Table 1 shows that 
these strata are all completely stable, and will therefore be preserved in all local 
unfoldings of OX9. In  other words, the ‘large-scale’ structure of the double-cusp 
unfolding is completely stable. (By contrast, figure 1 makes it clear that all structure 
of the singular ( U ,  V) section (C = 0) is unstable to C.) This observation helps to resolve 
a paradox remarked upon by U82. It was proved by Callahan (1982) (see also Upstill 
(1979a)) that the topological type of the OX9 caustic differs for K <, = ,> 0. The 
theoretical study of OX9 presented by U82 was for K =0,  although they showed (in 
appendix A) that in their experiment K actually had a (very small) positive value. 
Despite the consequent topological difference they found good agreement between 
their theory and observations. Our results suggest that this ‘experimental stability’ to 
K of double-cusp diffraction does not rely as much on diffraction blurring of the 
geometrical caustic as was suggested by U82 (p 1670), because although the details of 
the caustic are unstable, the dominant structure is not. 

The unstable structure in figure 1 comprises the lines of D l  (hyperbolic umbilic) 
singularities, which coincide with the A: lines, and the triple degeneracy of the A: 
surfaces that these (D:+A:) lines organise. This structure is stable only to 0, as 
illustrated in figure 2. The only effect of varying D from zero is to unfold the main 
(OX9) singularity into a pair of E6 singularities. By contrast, the instability of the D,‘ 
and A: strata to E is illustrated by the ( U ,  v) section shown in figure 3. (For the 
corresponding ( U ,  V ,  C )  section see figure 13 of U82.) 

In this section we have applied partial stability analysis to a question where, to 
some extent, we already know the answer, in order to illustrate how it works, and  how 

A: s u r f a c e s  

c 
Figure 2. A ( U ,  V,  C) section of the double-cusp caustic with D < 0 (from figure I(b) of U82). 
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Figure 3, A (U, V) section of the OX, caustic with A = E = D = K = 0, C < 0, E small and 
positive. The full curves indicate the A, and A$ strata displayed explicitly in figure 1. The 
broken curves indicate the structure arising from unfolding the D; and A: strata (based 
on figures 12(a) and (b) of U82). 

closely it relates to real observations of high-codimension catastrophes. We have 
focused our attention on a three-dimensional problem which can be visualised. In 0 5 
we investigate a problem where nothing is known in the general case, although again 
the results may easily be verified in the three-dimensional case by considering the well 
known geometry of these catastrophes. 

5. Application 11: stability of singular plane coordinate sections of cuspoid and conic 
umbilic catastrophes 

The reader will need some acquaintance with the previous papers by Wright (1981) 
and Wright et al (1982thenceforth referred to as I and 11-to fully appreciate this 
section. It relates specifically to the studies presented there of the following normal 
forms for, respectively, the cuspoid and conic umbilic catastrophes of general 
codimension K :  

3: 
s: K s;-2 

+( s ; c )  = s:s2 f - + c c,- + c3 - + czsz + c, s, . 
K n = 4  n-2  2 (3) 

With a slight modification of our notation above, we shall study the ( i ,  j )  sections 
of these normal forms, which are specified by setting all controls to zero except c, and 
c, for K 5 i > j  3 1. The features occurring in these sections, and their partial stabilities, 
are summarised in tables 2(a) and ( b )  for the cuspoids and conics respectively. Recall 
that the symbol A: means the intersection of two A2 strata, which is a non-local 
codimension-2 singularity distinct from A2 (see II), and that the tangent space of the 
intersection stratum A: is the intersection of the tangent spaces of the intersecting A? 
strata. 

As always, we exclude the origin because it is a completely unstable point feature. 
The remaining features are curve segments, straight line segments along one of the 
axes, or regions of the plane; this geometry was determined in detail in I and 11, and 
is summarised in tables 2(a )  and (b ) .  The tables also show whether the singularity on 
a feature occurs at zero values of the state variables s. This information, plus the 
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Table 2. Singularity type and stability of features of singular (i, j)-sections of ( a )  cuspoid 
and ( b )  conic umbilic catastrophes with K 2 i >  j 2  I .  In ( b )  under ‘Restrictions’, the 
symbols h, e, p stand respectively for hyperbolic, elliptic and parabolic umbilics. In both 
tables, under ‘Features’, singular planes are indicated and axial lines are shown by axis 
name; these singularities always occur at s = 0 or sI = s2 = 0. All other features are curves, 
for which s or at least one of sI and s2 is non-zero, as indicated. 

( a )  

In any section 
satisfying: Singularity Feature to variation of  

Stable, or unstable 

- A2 s # 0: curve Stable 
K ,  i, j all odd A: s # 0: curve c,(n even) 
K ,  i, j all even A: s # 0: curve c,(n odd) 
iz3 At-I s = 0: c, axis c,(n # j, 1 n 6 i - 2) 
j L 3  A,-, s = 0: plane c,( 1 S n j - 2) 

Stable, or unstable 
Section Restrictions Singularity Feature to variation o f  

Stable 
c3, c,(n even 2 4) 
Stable 
Unstable 
Stable 
c3, c,(n even24)  
c2, c3 

~ ~ ( 2 s  n s  i- 1) 

A3 s2 # 0 C l  

AK- l  c3 Stable only to cI  
A2 s2 # 0 Stable 
A: s2 # 0 c,(n even 3 4) 
A3 c4 C I  

Dt-I c, c l , c n ( 3 S n S i - l )  

A3 s2 # 0 C1 

A K - I  c3 Stable only to cI 
A3 c4 C I  

D,-l c, C], c2, C,(4S n S i - 2) 
A,-3 Plane cz, C,(4 c n s i - 2) 

( i , j 3 4 )  - A2 s2 # 0 Stable 
h, e ;  i and j odd A: s2 # 0 c,(n even34)  
p ; i  a n d j e v e n  A: s2 # 0 c2, c,,( n odd 3 5 )  
j s i - 2  D,-I c, c , ( n # j ,  I S n S i - 1 )  
J = i - l  Di-1 c, CI, c2, C“(4S n s i - 2) 
j = 4  A3 Plane CI,  c2. c3 

j 2 5  D,- 1 Plane cn( 1 < n S j - I )  

corank and codimension of the singularity as embodied in the Arnol’d symbol for the 
stratum (all of which was determined in I and II), is necessary to find the local unfolding 
and hence the tangent space of the stratum (see appendix). 

Table 2(a) displays the stability of the cuspoid sections in a very general form. As 
an example of its use, let us consider the (3, 1) section of the familiar canonical 
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swallowtail catastrophe &, i.e. the section corresponding to the mirror plane of B. 
This section has K = 3 ,  i = 3,  J = I .  It was classified in I as type E2T and is similar to 
figure 2 ( e )  of I. The following rows of table 2 ( a )  apply. The first row shows that a 
feature of every section is a curved A, stratum that is completely stable. The row 
labelled ‘ K ,  i, j all odd’ shows that the stratum is actually A:, i.e. an intersection of 
two A, strata, which is unstable to c,, so that if c, is made non-zero the A: curve splits 
up (linearly) into two distinct A, curves. The row labelled ‘ i  2 3’ shows that the c3 
axis is also a feature of the section, and is an A, stratum, which is unstable to c, ( n  # 1, 
1 s n G l), i.e. in the special case of this example it is unstable to nothing and hence 
is completely stable. 

Table 2 ( b )  for the conics needs to be more elaborate than that for the cuspoids. 
The general structure appears only for i > j  3 4, so the low-order sections have to be 
treated separately, as discussed in detail in 11. No distinction is made under ‘singularity’ 
between D’ (generalised hyperbolic and elliptic umbilic) strata of the catastrophe 
because it does not affect the geometry or stability of the features in the sections we 
study. (This distinction is made in 11.) As a simple specific illustration of the use of 
this table, let us apply it to the ( 2 ,  1) section of the familiar hyperbolic umbilic 
catastrophe D:. This section of 93 is well known to display only a finite angled corner, 
which is also a line of self-intersection of 93, and was classified as type BZ1 in 11. We 
might ask: ‘Is this self-intersection of 93 transversal?’, since this is not always clear 
from sketches in the literature. The first two rows only of table 2 ( b )  apply. The first 
row shows that the ( 2 ,  1) section of any (generalised) hyperbolic umbilic (De‘y,”) displays 
an A, stratum that is completely stable, and the second row shows that in fact it is an 
intersection stratum A: that is never completely stable. For D; this self-intersection 
of 93 is unstable to c3, so that when c3 is varied from 0 the intersection splits up and 
is therefore transversal. The fact that s,, s, # 0 shows that the features of ( 2 ,  1) sections 
of hyperbolic and parabolic umbilics do  not lie along the axes (that we have used), 
and are curves (except for the special case of D:). 

As we anticipate from the general arguments in P 3,  the tables show that in general 
the only completely stable features are curves of A, singularities. Apart from the origin, 
the only completely unstable feature is the AK- ,  line along the c3 axis of the ( 3 ,  1) 
section of every conic umbilic (with the consistent set of normal forms that we have 
used), as shown in table 2(b) .  For the codimension-3 conics this is a line of A, 
singularities, which are unstable despite being embedded in a two-dimensional space. 

All other unstable features are partially stable. Of these, the least stable in general 
are the AK-,  lines along the c3 axes of the ( 3 , 2 )  and ( i 24 ,3 )  conic sections, which 
are stable only to variation of c I ,  and the most stable are the A3 curve in each ( 3 , 2 )  
conic section and the A3 line along the c4 axis of each ( i > 4 , 2 )  and (1 z 4 , 3 )  conic 
section, which are unstable only to variation of c1.  

We have considered specific applications of each table, but let us now consider 
curved features in general: the tables show that they are all either A,, A: or A,. All 
the A, curves are completely stable, so that the component A2 curves of an A: curve 
are individually stable. The self-intersection of the A, strata is always stable in RK,  
but its occurrence in a plane section cannot be stable, since the A: stratum has 
codimension 2.  Hence the A: curves are unstable, but they infold into pairs of stable 
A2 curves under a generic perturbation. The A3 strata also have codimension 2,  but 
the A, curves are much more stable than the A: curves, in that they are unstable only 
to c l .  This difference in stability is simply an artifact of the orientation of the A: and 
A3 strata in R K .  A simple deduction from the way c ,  appears in the local unfoldings 
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(which we have not displayed) of the A3 curves and lines which are unstable to cI only 
is that under small perturbations they will unfold into one or three A, curves, but they 
cannot disappear completely. 

We have studied these sections primarily as a way of obtaining some information 
in an assimilable form about the unfoldings of the whole infinite sequences of sin- 
gularities A and D. However, such sections can also arise physically due to constraints, 
as discussed in I and I1 and above. For example, Pearcey and Hill (1963) computed 
and plotted the interference pattern near an optical focus with cylindrical symmetry, 
where third-order aberrations are dominant, described as optical coma. One now 
recognises this as the singular ( 2 ,  1) section of the swallowtail (&) diffraction catas- 
trophe. More generally, if only nth-order aberration is significant, the interference 
pattern is the ( 2 ,  1) section of the A,,,, diffraction catastrophe. The caustic in such a 
section is, from I ,  an (n + l ) /n  power-law cusp (n even) or bend (n odd). Such a 
feature corresponds to the top line of table 2(a) ,  which shows that it is a completely 
stable A2 feature. The effect of other degrees of aberration ceasing to be negligible is 
generically to further unfold the A,,, singularity, i.e. to perturb the singular (2, 1) 
section. Our stability analysis shows that apart from the main point of focus (at the 
origin in canonical coordinates) the caustic is completely stable to any perturbation. 
This result is not obvious and does not follow simply from the fact that the stratum 
involved is A*, because A2 features of non-generic sections can perfectly well either 
disappear or split up under perturbation. In other words, a perturbation only has any 
effect locally in a neighbourhood of the main focus, and has no global effect on the 
caustic. In practice, diffraction blurring of the caustic means that it is likely to appear 
stable to small perturbations everywhere, including the main focus, in the same way 
that the double cusp does. One consequence of this is that the results of Pearcey and 
Hill will be valid (to a good approximation) more generally than appears at first sight. 

6. Conclusions 

In many studies involving elementary catastrophes there exists structure in the control 
space that is ignored in straightforward applications of elementary catastrophe theory. 
There are two ways to include this structure: a priori following Wasserman (1975), 
Golubitsky and Schaeffer (1979a), Damon (1983) or a posteriori as we have done. We 
have shown that a local product structure in control space is common, although its 
existence has rarely been acknowledged. Its effect can be to make partial unfoldings 
stable in practice, although they are unstable in principle, and is similar to the effect 
of symmetry. We have presented a way of analysing the stability of such partial 
unfoldings to perturbations caused by making specific conti01 variations, which may 
be more significant in practice than the generic perturbations considered in the basic 
theory. 
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Appendix. Examples of calculations for conic umbilic sections 

We describe the calculations necessary to find the local form of the unfolding of 4 ( s ;  c ) ,  
defined by equation (3) in 5 5 of the text, about a point c on a stratum YK-'" of 93. 
These local unfoldings are necessary to find the local form of 93 for the stability 
analysis, which we illustrate at the end of this appendix (and also to distinguish elliptic 
and  hyperbolic umbilic strata). In fact, all we need is the tangent space of the relevant 
stratum of 93, so it suffices to work to first order locally in the control parameters. The 
calculations follow the standard methods of catastrophe theory outlined by, for 
example, Poston and  Stewart (1978) and  Gilmore (1981); our aim here is to illustrate 
some of the essential technical details. 

A l .  Notation 

We choose a general fixed point co on Y K - ,  so that 4 ( s ;  co) exhibits an  A,,, o r  D, 
singularity of codimension m < K at some particular s = so. We introduce local vari- 
ables U and T by the substitutions s + s o + u ,  c + c , + T .  We assume that we know in 
advance enough about the singularity about which we are expanding to know its 
determinacy I( ,  so that we know a priori that it suffices to work with K-jets (i.e. to order 
K )  in U, and to first order in T as explained above. 

Our aim is to reduce the local unfolding of the singularity to a normal form, whose 
control variables are functions of 7. If the singularity has codimension m, this implies 
m functions q , ( T ) ,  1 s i s  m, where T =  ( T ~ ,  . . . , T ~ ) ,  such that the rank of the Jacobian 
{aq j /a7 ; (0 ) }  is maximal ( m ) .  Then 93 is given locally by q ( T )  = 0, and  because we have 
worked to only first order in T,  the q l ( T )  are all linear. 

$(U: T ) :  K-jet of local expansion of 4 with terms independent of U omitted; 
Q ( u ) :  the quadratic part of the singularity $(U; 0), whose matrix is iH, where H is 

the Hessian matrix of the singularity; 
&(U; T ) :  the normal form for the unfolding of the singularity, in terms of T. For a 

cuspoid U is a single variable, for an  umbilic 21 = ( u I ,  u 2 ) ;  
subscripts 1 and 2 on 4 denote partial derivatives with respect to sI and s2 respectively. 

Because co is on 93, 4,(s0; co) = &(so; co) = 0, so that the linear part of ;(U; 0) must 
be zero and  can be automatically dropped. 

We use the following notation: 

A2. Local unfolding of an umbilic singularity 

At a n  umbilic singularity the quadratic part Q ( u )  of &(U; 0) must be zero. Then using 
determinacy, or equivalently retaining only the lowest power of u2 whose coefficient 
remains finite at T = O ,  and shifting the u2 origin (see 0 A4 below) to remove the next 
lowest power of u2,  gives the normal form of the local unfolding immediately. 

A3. Local unfolding of a cuspoid singularity 

At a cuspoid singularity Q ( u )  is not zero, but it must be degenerate so that the 
determinant of the Hessian matrix H is zero. If we assume that 4I I # 0 (which is 
always the case for the singular coordinate sections discussed in 11) then we can write 



1988 F J Wright and G Dangelmayr 

the matrix of Q as 

where a is a non-zero constant. If p # 0, the first step is to transform & U ;  T )  so that 
Q(u)  is diagonal. This is necessary to find the direction in U space in which Q(u)  is 
degenerate. Any convenient linear transformation in U which diagonalises Q ( u )  will 
suffice, because it will not mix different powers of U. A suitable transformation is 

Then (?(U)= a ( u : + 2 p u , u 2 + p 2 u : )  becomes Q ’ ( u ) =  a(1 +p2)2u: which is clearly 
degenerate in u I ,  and $(U; T ) +  Jf(u; 7). 

We now apply a reduction algorithm, the existence of which is guaranteed by the 
splitting lemma and which is based on its proof (see e.g. Poston and Stewart 1978), to 
extract the singularity and its local unfolding. By diagonalising Q we have made the 
locus of Morse critical points of 4 with respect to u2 tangent to ( u t ;  T )  space at the 
origin of ( U ;  7). We find this ‘Morse locus’ by solving 

aJi(v; 7) /au2  = o for u2 as a function of uI and T. 

Thentherestrictionof ;’(U; T)tothe Morselocus,namely4,(ul; T ) =  6 ’ ( u l r  u2(ul ;  T ) ;  T ) ,  

is the local unfolding of the singularity. 
In finding u2(ul; T )  we remember that we are working only to order K in u t  and to 

linear order in T. We only need find u2 to sufficient accuracy to give d3 to the correct 
order, which makes the problem much simpler than it appears. In fact, it often amounts 
simply to setting u2 = 0. 

A4. Shift lemma 

The final step in reducing the local unfolding to a normal form is to translate the 
variable ( u l )  to remove the ‘penultimate term’, which we define to be the highest power 
but one, using the following result. 

I f f  = x n  +cIxn-’  + c ~ x ” - ~ + .  . .+C,,-~X and ~ , = O ( T ) ,  1 s r s  n - 1, then 

f = X ‘ R + C 2 X ’ n - 2 + .  . .+cn-Ix’+o(T2) where x’ = x + c l / n .  (Al) 

This shows that we can simply drop the penultimate term, although for an umbilic 
singularity we must also transform the u:u2 term using (Al).  

AS. Example: local unfolding about a singular coordinate section 

To illustrate the method we will find a local unfolding about a singularity at a point 
in an ( i  3 2 ,  1) plane (i.e. with all c, other than ci and c ,  set to zero) which has sI, s2 # 0 
(see 11). In this case the Hessian is not diagonal. Information derived as in I1 and 
quoted in table 2(b)  shows that this singularity should be A2, which is 3-determined. 
Expanding to O(u3) and O(T) about the singularity and dropping terms linear in U 
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which are independent of T,  as explained in 0 Al, gives 

where 

a, = b(n - l)(n - 2 ) s y 3 ,  b, = i(n - 3 ) ~ ; - ~ ,  

co=(c1,  c2, * .  . , C K ) ,  (’17 s 2 ) ,  

and all c,, n 3 3, are zero except for n = i. 
The quadratic part with T = O  must have the form 

Q ( u )  (s2 +fc3) (  U: + 2pu1 U* + p2u:). 

(This could, of course, be shown explicitly using the relations between ci, cj, s, and s2 
found as in 11.) Diagonalising as explained in 0 A3, 4 ( u ;  T )  becomes 

&’(U ; 7) = [ (p + A)u: + (2p2 - 1 - 3p2A) V I  U: + p(p2 - 2 + ~ A ) u : u ~  - ( p 2  + A )  U:] 
K 

2 2  2 
+ ( s 2  + i C 3 ) ( l  + p  ) o2 + ( c Tns;-3 + T2 (Po2 - V I )  + ( T 3 s l  + T l ) ( p u I  + u2) 

n = 4  

where 

The ‘Morse locus’ is given by 

d & ’ ( u ;  T ) / d U 2 = 3 ( p  +A)v:+2(2p2- 1 -3p2A)~ l t )2+p(p2-2  +3A)t~: 

1 K 
+ 2 ( S 2 + f C 3 ) ( 1  +p2)V2+p( 1 T , S ; - 3 + T 2  + 7 3 S l + T l = O .  

n =4  

Extracting the term linear in u2, we have u2 = O(T)  +O(u:) +O(ul u2) +O(u:). Iterating 
to O(T) and O(u:), this becomes 

U 2  = o( 7 )  + o( U:) +O(Tul), U: = O( Tu:), U: = 0. 

Substituting into & ‘ ( U ;  T ) ,  retaining only terms to O(u:) and only lowest order in T in 
all coefficients, we find 

~ s ( V I ;  7)’ ~ ’ ( U I ,  V 2 ( V i ;  7); 7) 

+k(T3sI + T l ) u l *  

By the shift lemma, we may drop the term in U:, and the result is identical to setting 
u 2 = 0  in & ’ ( U ;  7). Checking that the coefficient of U :  is not zero confirms the A2 
singularity. 
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A6. Example: tangent space and partial stability 

The tangent space of any stratum of codimension m is given by the simultaneous 
solution of m (linear) equations. The tangent space of (the Az stratum of) 99 at the 
point considered in 5 A5 has equation 

K 
p r 1 - r * + p s l r 3 -  c s;-3rn=0. 

n =4  

Since this equation contains variations in all directions in control space, all points of 
this particular feature (a curve of A, singularities) are completely stable, as stated in 
table 2(b ) .  

In the h ( 2 ,  1)  and h(i odd 3 5, 1)  sections, these curves are actually self-intersections 
of the A, stratum. On the 'other sheet', sI and s, have opposite sign, but in these 
sections p = sI/sz and so does not change sign. Therefore, in terms of s-values on one 
sheet, the equation of the tangent space of the other sheet is 

K 

pr1 - r 2  - PSI73 - c ( - S 2 y 3 r "  = 0. 
n = 4  

('43) 

The tangent space of the intersection stratum is given by the simultaneous solution of 
( A 2 )  and (A3). Adding and subtracting these equations leads to two equations relating 
disjoint sets of r,,, from which the unstable controls may easily be picked out, and are 
as stated in table 2(b ) .  
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